Муниципальное бюджетное общеобразовательное учреждение города Тулуна «Средняя общеобразовательная школа с углубленным изучением отдельных предметов № 20 «Новая Эра»

Рассмотрено:

руководитель ШМО

Бусо Бусова О.Г.

31.08.2023г.

Согласовано:

зам. директора по УВР

Каденёва Н.В.

31.08.2023 г.

Утверждаю:

директор МБОУ СОШ «Новая Эра»

Болдуева Н.С.

31 08.2023 PPA

Рабочая программа учебного предмета

«Биология» (базовый уровень)

для обучающихся 10-11 классов

на 2023-2024 учебный год

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

При разработке программы по биологии теоретическую основу для определения подходов к формированию содержания учебного предмета «Биология» составили: концептуальные положения ФГОС СОО о взаимообусловленности целей, содержания, результатов обучения и требований к уровню подготовки выпускников, положения об общих целях и принципах, характеризующих современное состояние системы среднего общего образования в Российской Федерации, а также положения о специфике биологии, её значении в познании живой природы и обеспечении существования человеческого общества. Согласно названным положениям, определены основные функции программы по биологии и её структура.

Программа по биологии даёт представление о целях, об общей стратегии обучения, воспитания и развития обучающихся средствами учебного предмета «Биология», определяет обязательное предметное содержание, его структуру, распределение по разделам и темам, рекомендуемую последовательность изучения учебного материала с учётом межпредметных и внутрипредметных связей, логики образовательного процесса, возрастных особенностей обучающихся.

В программе по биологии также учитываются требования к планируемым личностным, метапредметным и предметным результатам обучения в формировании основных видов учебно-познавательной деятельности/учебных действий обучающихся по освоению содержания биологического образования.

В программе по биологии (10—11 классы, базовый уровень) реализован принцип преемственности в изучении биологии, благодаря чему в ней просматривается направленность на развитие знаний, связанных с формированием естественно-научного мировоззрения, ценностных ориентаций личности, экологического мышления, представлений о здоровом образе жизни и бережным отношением к окружающей природной среде. Поэтому наряду с изучением общебиологических теорий, а также знаний о строении живых систем разного ранга и сущности основных протекающих в них процессов в программе по биологии уделено внимание использованию полученных знаний в повседневной жизни для решения прикладных задач, в том числе: профилактики наследственных заболеваний человека, медико-генетического консультирования, обоснования экологически целесообразного поведения в окружающей природной среде, анализа влияния хозяйственной деятельности человека на состояние природных и искусственных экосистем. Усиление внимания к прикладной направленности учебного предмета «Биология» продиктовано необходимостью обеспечения условий для решения одной из актуальных задач школьного биологического образования, которая предполагает формирование у обучающихся способности адаптироваться к изменениям динамично развивающегося современного мира.

Биология на уровне среднего общего образования занимает важное место. Она обеспечивает формирование у обучающихся представлений о научной картине мира, расширяет и обобщает знания о живой природе, её отличительных признаках — уровневой организации и эволюции, создаёт условия для: познания законов живой природы, формирования функциональной грамотности, навыков здорового и безопасного образа жизни, экологического мышления, ценностного отношения к живой природе и человеку.

Большое значение биология имеет также для решения воспитательных и развивающих задач среднего общего образования, социализации обучающихся. Изучение биологии обеспечивает условия для формирования интеллектуальных, коммуникационных и информационных навыков, эстетической культуры, способствует интеграции биологических знаний с представлениями из других учебных предметов, в частности, физики, химии и географии. Названные положения о предназначении учебного предмета «Биология» составили основу для определения подходов к отбору и структурированию его содержания, представленного в программе по биологии.

Отбор содержания учебного предмета «Биология» на базовом уровне осуществлён с позиций культуросообразного подхода, в соответствии с которым обучающиеся должны освоить знания и умения, значимые для формирования общей культуры, определяющие адекватное поведение человека в окружающей природной среде, востребованные в повседневной жизни и практической деятельности. Особое место в этой системе знаний занимают элементы содержания, которые служат основой для формирования представлений о

современной естественно-научной картине мира и ценностных ориентациях личности, способствующих гуманизации биологического образования.

Структурирование содержания учебного материала в программе по биологии осуществлено с учётом приоритетного значения знаний об отличительных особенностях живой природы, о её уровневой организации и эволюции. В соответствии с этим в структуре учебного предмета «Биология» выделены следующие содержательные линии: «Биология как наука. Методы научного познания», «Клетка как биологическая система», «Организм как биологическая система», «Система и многообразие органического мира», «Эволюция живой природы», «Экосистемы и присущие им закономерности».

Цель изучения учебного предмета «Биология» на базовом уровне — овладение обучающимися знаниями о структурнофункциональной организации живых систем разного ранга и приобретение умений использовать эти знания для грамотных действий в отношении объектов живой природы и решения различных жизненных проблем.

Достижение цели изучения учебного предмета «Биология» на базовом уровне обеспечивается решением следующих задач:

освоение обучающимися системы знаний о биологических теориях, учениях, законах, закономерностях, гипотезах, правилах, служащих основой для формирования представлений о естественно-научной картине мира, о методах научного познания, строении, многообразии и особенностях живых систем разного уровня организации, выдающихся открытиях и современных исследованиях в биологии;

формирование у обучающихся познавательных, интеллектуальных и творческих способностей в процессе анализа данных о путях развития в биологии научных взглядов, идей и подходов к изучению живых систем разного уровня организации;

становление у обучающихся общей культуры, функциональной грамотности, развитие умений объяснять и оценивать явления окружающего мира живой природы на основании знаний и опыта, полученных при изучении биологии;

формирование у обучающихся умений иллюстрировать значение биологических знаний в практической деятельности человека, развитии современных медицинских технологий и агробиотехнологий;

воспитание убеждённости в возможности познания человеком живой природы, необходимости бережного отношения к ней, соблюдения этических норм при проведении биологических исследований;

осознание ценности биологических знаний для повышения уровня экологической культуры, для формирования научного мировоззрения;

применение приобретённых знаний и умений в повседневной жизни для оценки последствий своей деятельности по отношению к окружающей среде, собственному здоровью, обоснование и соблюдение мер профилактики заболеваний.

В системе среднего общего образования «Биология», изучаемая на базовом уровне, является обязательным учебным предметом, входящим в состав предметной области «Естественно-научные предметы».

Для изучения биологии на базовом уровне среднего общего образования отводится 68 часов: в 10 классе – 34 часа (1 час в неделю), в 11 классе – 34 часа (1 час в неделю).

Планируемые результаты освоения учебного предмета.

В результате изучения учебного предмета «Биология» на уровне среднего общего образования:

Выпускник на базовом уровне научится:

– раскрывать на примерах роль биологии в формировании современной научной картины мира и в практической деятельности людей;

- понимать и описывать взаимосвязь между естественными науками: биологией, физикой, химией; устанавливать взаимосвязь природных явлений;
- понимать смысл, различать и описывать системную связь между основополагающими биологическими понятиями: клетка, организм, вид, экосистема, биосфера;
- использовать основные методы научного познания в учебных биологических исследованиях, проводить эксперименты по изучению биологических объектов и явлений, объяснять результаты экспериментов, анализировать их, формулировать выводы;
- формулировать гипотезы на основании предложенной биологической информации и предлагать варианты проверки гипотез;
- сравнивать биологические объекты между собой по заданным критериям, делать выводы и умозаключения на основе сравнения;
- обосновывать единство живой и неживой природы, родство живых организмов, взаимосвязи организмов и окружающей среды на основе биологических теорий;
- приводить примеры веществ основных групп органических соединений клетки (белков, жиров, углеводов, нуклеиновых кислот);
- распознавать клетки (прокариот и эукариот, растений и животных) по описанию, на схематических изображениях; устанавливать связь строения и функций компонентов клетки, обосновывать многообразие клеток;
 - распознавать популяцию и биологический вид по основным признакам;
 - описывать фенотип многоклеточных растений и животных по морфологическому критерию;
 - объяснять многообразие организмов, применяя эволюционную теорию;
- классифицировать биологические объекты на основании одного или нескольких существенных признаков (типы питания, способы дыхания и размножения, особенности развития);
 - объяснять причины наследственных заболеваний;
- выявлять изменчивость у организмов; объяснять проявление видов изменчивости, используя закономерности изменчивости; сравнивать наследственную и ненаследственную изменчивость;
- выявлять морфологические, физиологические, поведенческие адаптации организмов к среде обитания и действию экологических факторов;
 - составлять схемы переноса веществ и энергии в экосистеме (цепи питания);
- приводить доказательства необходимости сохранения биоразнообразия для устойчивого развития и охраны окружающей среды;
- оценивать достоверность биологической информации, полученной из разных источников, выделять необходимую информацию для использования ее в учебной деятельности и решении практических задач;
- представлять биологическую информацию в виде текста, таблицы, графика, диаграммы и делать выводы на основании представленных данных;
- оценивать роль достижений генетики, селекции, биотехнологии в практической деятельности человека и в собственной жизни;
 - объяснять негативное влияние веществ (алкоголя, никотина, наркотических веществ) на зародышевое развитие человека;
 - объяснять последствия влияния мутагенов;
 - объяснять возможные причины наследственных заболеваний.

Выпускник на базовом уровне получит возможность научиться:

- давать научное объяснение биологическим фактам, процессам, явлениям, закономерностям, используя биологические теории (клеточную, эволюционную), учение о биосфере, законы наследственности, закономерности изменчивости;
- характеризовать современные направления в развитии биологии; описывать их возможное использование в практической деятельности;
 - сравнивать способы деления клетки (митоз и мейоз);
- решать задачи на построение фрагмента второй цепи ДНК по предложенному фрагменту первой, иРНК (мРНК) по участку ДНК;
- решать задачи на определение количества хромосом в соматических и половых клетках, а также в клетках перед началом деления (мейоза или митоза) и по его окончании (для многоклеточных организмов);
- решать генетические задачи на моногибридное скрещивание, составлять схемы моногибридного скрещивания, применяя законы наследственности и используя биологическую терминологию и символику;
- устанавливать тип наследования и характер проявления признака по заданной схеме родословной, применяя законы наследственности;
- оценивать результаты взаимодействия человека и окружающей среды, прогнозировать возможные последствия деятельности человека для существования отдельных биологических объектов и целых природных сообществ.

Содержание учебного предмета

(35 часов, 1час в неделю)

Раздел 1. Биология как наука. Методы научного познания. (3 часа)

Тема 1.1. Краткая история развития биологии. Методы научного познания (1 час)

Биология как наука; предмет и методы изучения в биологии. Общая биология — учебная дисциплина об основных закономерностях возникновения, развития и поддержания жизни на Земле. Общая биология как один из источников формирования диалектико-материалистического мировоззрения. Общебиологические закономерности — основа рационального природопользования, сохранения окружающей среды, интенсификации сельскохозяйственного производства и сохранения здоровья человека.

Связь биологических дисциплин с другими науками (химией, физикой, географией, астрономией, историей и др.). Роль биологии в формировании научных представлений о мире.

Тема 1.2. Сущность и свойства живого, уровни организации и методы познания живой природы (2 час)

Жизнь как форма существования материи; определение понятия «жизнь». Жизнь и живое вещество; косное, биокосное и биогенное вещество биосферы. Уровни организации живой материи и принципы их выделения; молекулярный, субклеточный, клеточный, тканевый и организменный, популяционно-видовой, биоценотический и биосферный уровни организации живого.

Единство химического состава живой материи; основные группы химических элементов и молекул, образующие живое вещество биосферы. Клеточное строение организмов, населяющих Землю. Обмен веществ (метаболизм) и саморегуляция в

биологических системах; понятие о гомеостазе как об обязательном условии существования живых систем. Самовоспроизведение; наследственность и изменчивость как основа существования живой материи, их проявления на различных уровнях организации живого. Рост и развитие. Раздражимость; формы избирательной реакции организмов на внешние воздействия (безусловные и условные рефлексы; таксисы, тропизмы и настии). Ритмичность процессов жизнедеятельности; биологические ритмы и их адаптивное значение. Дискретность живого вещества и взаимоотношение части и целого в биосистемах. Энергозависимость живых организмов; формы потребления энергии.

Царства живой природы; естественная классификация живых организмов. Видовое разнообразие крупных систематических групп и основные принципы организации животных, растений, грибов и микроорганизмов.

Демонстрация. Схемы, отражающие структуру царств живой природы, многообразие живых организмов. Схемы и таблицы, характеризующие строение и распространение в биосфере растений, животных, грибов и микроорганизмов.

Демонстрация. Схемы, отражающие многоуровневую организацию живого (организменный и биоценотический уровни).

Основные понятия. Биология. Жизнь. Основные отличия живых организмов от объектов неживой природы. Уровни организации живой материи. Объекты и методы изучения в биологии. Многообразие живого мира; царства живой природы, естественная система классификации живых организмов.

Неорганические и органические молекулы и вещества; клетка, ткань, орган, системы органов. Понятие о целостном организме. Вид и популяция (общие представления). Биогеоценоз. Биосфера.

- Умения. Объяснять основные свойства живых организмов, в том числе этапы метаболизма, саморегуляцию; понятие гомеостаза и другие особенности живых систем различного иерархического уровня как результат эволюции живой материи. Характеризовать структуру царств живой природы, объяснять принципы классификации живых организмов.
- Межпредметные связи. Ботаника. Основные группы растений; принципы организации растительных организмов, грибов и микроорганизмов.

Зоология. Основные группы животных; отличия животных и растительных организмов.

Неорганическая химия. Кислород, водород, углерод, азот, сера, фосфор и другие элементы периодической системы Д. И. Менделеева, их основные свойства.

Органическая химия. Основные группы органических соединений; биологические полимеры — белки, жиры и нуклеиновые кислоты, углеводы.

Раздел 2. Клетка.

Тема 2.1. История изучения клетки. Клеточная теория. (1 час)

Предмет и задачи цитологии. История изучения клетки. Клеточная теория строения организмов. История развития клеточной теории; работы М. Шлейдена, Т. Шванна, Р. Броуна, Р. Вирхова и других ученых. Основные положения клеточной теории; современное состояние клеточной теории строения организмов. Значение клеточной теории для развития биологии.

Тема 2. Химическая организация живого вещества (5 часов)

Элементный состав живого вещества биосферы. Распространенность элементов, их вклад в образование живой материи и объектов неживой природы. Макроэлементы, микроэлементы; их вклад в образование неорганических и органических молекул живого вещества. Неорганические молекулы живого вещества: вода; химические свойства и биологическая роль: растворитель гидрофильных молекул, среда протекания биохимических превращений; роль воды в компартментализации и межмолекулярных взаимодействиях, теплорегуляции и др. Соли неорганических кислот, их вклад в обеспечение процессов жизнедеятельности и

поддержание гомеостаза. Роль катионов и анионов в обеспечении процессов жизнедеятельности. Осмос и осмотическое давление; осмотическое поступление молекул в клетку. Буферные системы клетки и организма.

Органические молекулы. Биологические полимеры — белки; структурная организация (первичная, варианты вторичной, третичная и четвертичная структурная организация молекул белка и химические связи, их образующие). Свойства белков: водорастворимость, термолабильность, поверхностный заряд и др.; денатурация (обратимая и необратимая), ренатурация; биологический смысл и практическое значение. Функции белковых молекул. Биологические катализаторы — белки, классификация, их свойства, роль белков в обеспечении процессов жизнедеятельности. Углеводы в жизни растений, животных, грибов и микроорганизмов. Структурнофункциональные особенности организации моно-и дисахаридов. Строение и биологическая роль биополимеров — полисахаридов. Жиры — основной структурный компонент клеточных мембран и источник энергии. Особенности строения жиров и липоидов, лежащие в основе их функциональной активности на уровне клетки и целостного организма. ДНК — молекулы наследственности; история изучения. Уровни структурной организации; структура полинуклеотидных цепей, правило комплементарности (правило Чаргаффа), двойная спираль (Уотсон и Крик); биологическая роль ДНК. Генетический код, свойства кода. Редупликация ДНК, передача наследственной информации из поколения в поколение. Передача наследственной информации из ядра в цитоплазму; транскрипция. РНК, структура и функции. Информационные, транспортные, рибосомальные и регуляторные РНК. «Малые» молекулы и их роль в обменных процессах. Витамины: строение, источники поступления, функции в организме.

Демонстрация. Принципиальные схемы устройства светового и электронного микроскопа.

Лабораторные и практические работы

Ферментативное расщепление пероксида водорода в тканях организма.

Тема 2.3. Строение прокариотической и эукариотической клеток (4 часа)

Методы изучения клетки: световая и электронная микроскопия; биохимические и иммунологические методы. Два типа клеточной организации: прокариотические и эукариотические клетки.

Царство Прокариоты (Дробянки); систематика и отдельные представители: цианобактерии, бактерии. Форма и размеры прокариотических клеток. Строение цитоплазмы бактериальной клетки; локализация ферментных систем и организация метаболизма у прокариот. Генетический аппарат бактерий; особенности реализации наследственной информации. Особенности жизнедеятельности бактерий: автотрофные и гетеротрофные бактерии; аэробные и анаэробные микроорганизмы. Спорообразование и его биологическое значение. Размножение, половой процесс у бактерий. Место и роль прокариот в биоценозах.

Цитоплазма эукариотической клетки. Мембранный принцип организации клеток; строение биологической мембраны, морфологические и функциональные особенности мембран различных клеточных структур. Органеллы цитоплазмы, их структура и функции. Наружная цитоплазматическая мембрана, эндоплазматическая сеть, аппарат Гольджи, лизосомы; механизм внутриклеточного пищеварения. Митохондрии — энергетические станции-клетки; механизмы клеточного дыхания. Рибосомы и их участие в процессах трансляции. Клеточный центр. Органоиды движения: жгутики и реснички. Цитоскелет. Специальные органоиды цитоплазмы: сократительные вакуоли и др. Взаимодействие органоидов в обеспечении процессов метаболизма. Особенности строения растительных клеток; вакуоли и пластиды. Виды пластид; их структура и функциональные особенности. Клеточная стенка. Особенности строения клеток грибов. Включения, значение и роль в метаболизме клеток.

Клеточное ядро — центр управления жизнедеятельностью клетки. Структуры клеточного ядра: ядерная оболочка, хроматин (гетерохроматин и эухроматин), ядрышко. Кариоплазма; химический состав и значение для жизнедеятельности ядра. Дифференциальная активность генов; эухроматин. Хромосомы. Структура хромосом в различные периоды жизненного цикла клетки; кариотип, понятие о гомологичных хромосомах. Диплоидный и гаплоидный наборы хромосом.

Демонстрация. Модели клетки. Схемы строения органоидов растительной и животной клеток. Микропрепараты клеток растений, животных и одноклеточных грибов.

Демонстрация. Биографии ученых, внесших вклад в развитие клеточной теории.

Основные понятия. Органические и неорганические вещества, образующие структурные компоненты клеток. Прокариоты: бактерии и синезеленые водоросли (цианобактерии). Эукариотическая клетка, многообразие эукариот; клетки одноклеточных и многоклеточных организмов. Особенности растительной и животной клеток. Ядро и цитоплазма — главные составные части клетки. Органоиды цитоплазмы. Включения. Хромосомы, их строение. Диплоидный и гаплоидный наборы хромосом. Кариотип. Жизненный цикл клетки. Митотический цикл; митоз. Биологический смысл митоза. Биологическое значение митоза. Положения клеточной теории строения организмов.

Умения. Объяснять рисунки и схемы, представленные в учебнике. Самостоятельно составлять схемы процессов, протекающих в клетке, и локализовать отдельные их этапы в различных клеточных структурах. Иллюстрировать ответ простейшими схемами и рисунками клеточных структур.

Межпредметные связи. Неорганическая химия. Химические связи. Строение вещества. Окислительно-восстановительные реакции.

Органическая химия. Принципы организации органических соединений. Углеводы, жиры, белки, нуклеиновые кислоты.

Физика. Свойства жидкостей, тепловые явления. Законы термодинамики.

Тема 2.4. Реализация наследственной информации в клетке (1 час)

Обмен веществ и превращение энергии в клетке — основа всех проявлений ее жизнедеятельности. Каталитический характер реакций обмена веществ. Автотрофные и гетеротрофные организмы. Пластический и энергетический обмен. Реализация наследственной информации. Биологический синтез белков и других органических молекул в клетке. Транскрипция; ее сущность и механизм. Трансляция; сущность и механизм. Энергетический обмен; структура и функции АТФ.

Тема 2.5. Вирусы (1 час)

Вирусы — внутриклеточные паразиты на генетическом уровне. Открытие вирусов, механизм взаимодействия вируса и клетки, инфекционный процесс. Вертикальный и горизонтальный тип передачи вирусов. Заболевания животных и растений, вызываемые вирусами. Вирусные заболевания, встречающиеся у человека; грипп, гепатит, СПИД. Бактериофаги.

Раздел 3. Организм 19 часов

Раздел 3.1. Организм – единое целое. Многообразие живых организмов. (1 час)

Многообразие живых организмов.

Тема 3.2. Обмен веществ и превращение энергии. (2 часа)

Этапы энергетического обмена. Подготовительный этап, роль лизосом; неполное (бескислородное) расщепление. Полное кислородное окисление; локализация процессов в митохондриях. Сопряжение расщепления глюкозы в клетке с распадом и синтезом АТФ. Фотосинтез; световая фаза и особенности организации тилакоидов гран, энергетическая ценность. Темновая фаза фотосинтеза; процессы темновой фазы; использование энергии. Хемосинтез.

Демонстрация. Схемы путей метаболизма в клетке. Энергетический обмен на примере расщепления глюкозы. Пластический обмен: биосинтез белка и фотосинтез (модели-аппликации).

Тема 3.3. Размножение (4 часа)

Формы бесполого размножения: митотическое деление клеток одноклеточных; спорообразование, почкование у одноклеточных и многоклеточных организмов; вегетативное размножение. Биологический смысл и эволюционное значение бесполого размножения.

Клетки в многоклеточном организме. Понятие о дифференцировке клеток многоклеточного организма. Жизненный цикл клеток. Ткани организма с разной скоростью клеточного обновления: обновляющиеся, растущие и стабильные. Размножение клеток. Митотический цикл: интерфаза — период подготовки клетки к делению, редупликация ДНК; митоз, фазы митотического деления и преобразования хромосом в них. Биологический смысл митоза. Биологическое значение митоза (бесполое размножение, рост, восполнение клеточных потерь в физиологических и патологических условиях). Понятие о регенерации.

Половое размножение растений и животных. Половая система, органы полового размножения млекопитающих. Гаметогенез. Периоды образования половых клеток: размножение и рост. Период созревания (мейоз); профаза I и процессы, в ней происходящие: конъюгация, кроссинговер. Механизм, генетические последствия и биологический смысл кроссинговера. Биологическое значение и биологический смысл мейоза. Период формирования половых клеток; сущность и особенности течения. Особенности сперматогенеза и овогенеза. Осеменение и оплодотворение. Наружное и внутреннее оплодотворение. Партеногенез. Развитие половых клеток у высших растений; двойное оплодотворение. Эволюционное значение полового размножения.

Демонстрация. Способы вегетативного размножения плодовых деревьев и овощных культур. Схемы и рисунки, показывающие почкование дрожжевых грибов и кишечнополостных.

Демонстрация. Микропрепараты яйцеклеток. Схема строения сперматозоидов различных животных. Схемы и рисунки, представляющие разнообразие потомства у одной пары родителей.

Демонстрация. Митотическое деление клетки в корешке лука под микроскопом и на схеме. Схемы строения растительных и животных клеток различных тканей в процессе деления.

Основные понятия. Многообразие форм и распространенность бесполого размножения. Биологическое значение бесполого размножения. Половое размножение и его биологическое значение. Органы половой системы; принципы их строения и гигиена. Гаметогенез; мейоз и его биологическое значение. Осеменение и оплодотворение.

Умения. Объяснять процесс мейоза и другие этапы образования половых клеток, используя схемы и рисунки из учебника. Характеризовать сущность бесполого и полового размножения.

Межпредметные связи. Не органических производств.

Физика. Электромагнитное поле. Ионизирующее излучение, понятие о дозе излучения и биологической защите.

Тема 3.4. Индивидуальное развитие организма (онтогенез) (2 часа)

Типы яйцеклеток; полярность, распределение желтка и генетических детерминант. Оболочки яйца; активация оплодотворенных яйцеклеток к развитию. Основные закономерности дробления; образование однослойного зародыша — бластулы. Гаструляция; закономерности образования двуслойного зародыша — гаструлы. Зародышевые листки и их дальнейшая дифференцировка. Первичный органогенез (нейруляция) и дальнейшая дифференцировка тканей, органов и систем. Регуляция эмбрионального развития; детерминация и эмбриональная индукция. Роль нервной и эндокринной систем в обеспечении эмбрионального развития организмов. Управление размножением растений и животных. Искусственное осеменение, пересадка зародышей. Клонирование растений и животных; перспективы создания тканей и органов человека.

Закономерности постэмбрионального периода развития. Непрямое развитие; полный и неполный метаморфоз. Биологический смысл развития с метаморфозом. Стадии постэмбрионального развития (личинка, куколка, имаго). Прямое развитие: дорепродуктивный, репродуктивный и пострепродуктивный периоды. Старение и смерть; биология продолжительности жизни.

Биологическое значение двойного оплодотворения. Эмбриональное развитие; деление зиготы, образование тканей и органов зародыша. Постэмбриональное развитие. Прорастание семян, дифференцировка органов и тканей, формирование побеговой и корневой систем. Регуляция развития растений; фитогормоны.

Сходство зародышей и эмбриональная дивергенция признаков (закон К. Бэра). Биогенетический закон (Э. Геккель и К. Мюллер). Работы академика А. Н. Северцова, посвященные эмбриональной изменчивости (изменчивость всех стадий онтогенеза; консервативность ранних стадий эмбрионального развития; возникновение изменений как преобразование стадий развития и полное выпадение предковых признаков).

Демонстрация. Сравнительный анализ зародышей позвоночных на разных этапах эмбрионального развития. Модели эмбрионов ланцетника, лягушек или других животных. Таблицы, иллюстрирующие бесполое и половое размножение.

Демонстрация. Таблицы, иллюстрирующие процесс метаморфоза у членистоногих и позвоночных (жесткокрылые и чешуйчатокрылые, амфибии).

Демонстрация. Таблица, отражающая сходство зародышей позвоночных животных. Схемы' преобразования органов и тканей в филогенезе.

Демонстрация. Фотографии, отражающие последствия воздействий факторов среды на развитие организмов. Схемы и статистические таблицы, демонстрирующие последствия употребления алкоголя, наркотиков и табака на характер развития признаков и свойств у потомства.

Основные понятия. Этапы эмбрионального развития растений и животных. Периоды постэмбрионального развития. Биологическая продолжительность жизни. Влияние вредных воздействий курения, употребления наркотиков, алкоголя, загрязнения окружающей среды на развитие организма и продолжительность жизни

Роль факторов окружающей среды в эмбриональном и постэмбриональном развитии организма. Критические периоды развития. Влияние изменений гомеостаза организма матери и плода в результате воздействия токсичных веществ (табачного дыма, алкоголя, наркотиков и т. д.) на ход эмбрионального и постэмбрионального периодов развития (врожденные уродства).

Понятие о регенерации; внутриклеточная, клеточная, тканевая и органная регенерация. Эволюция способности к регенерации у позвоночных животных.

Умения. Объяснять процесс развития живых организмов как результат постепенной реализации наследственной информации. Различать и охарактеризовывать различные периоды онтогенеза и указывать факторы, неблагоприятно влияющие на каждый из этапов развития. Межпредметные связи. Неорганическая химия. Защита природы от воздействия отходов химических производств.

Физика. Электромагнитное поле. Ионизирующее излучение, понятие о дозе излучения и биологической защите.

Тема 3.5. Наследственность и изменчивость. (8 часов)

Представления древних о родстве и характере передачи признаков из поколения в поколение. Взгляды средневековых ученых на процессы наследования признаков. История развития генетики. Основные понятия генетики. Признаки и свойства; гены, аллельные гены. Гомозиготные и гетерозиготные организмы. Генотип и фенотип организма; генофонд.

Демонстрация. Биографии виднейших генетиков.

Молекулярная структура гена. Связь между генами и признаками.

Закономерности наследования признаков, выявленные Г. Менделем. Гибридологический метод изучения наследственности. Моногибридное скрещивание. Первый закон Менделя — закон доминирования. Второй закон Менделя — закон расщепления. Полное и неполное доминирование. Закон чистоты гамет и его цитологическое обоснование. Множественные аллели. Анализирующее скрещивание. Дигибридное и полигибридное скрещивание; третий закон Менделя — закон независимого комбинирования.

Хромосомная теория наследственности. Группы сцепления генов. Сцепленное наследование признаков. Закон Т. Моргана. Полное и неполное сцепление генов; расстояние между генами, расположенными в одной хромосоме; генетические карты хромосом.

Генетическое определение пола; гомогаметный и гетерогаметный пол. Генетическая структура половых хромосом. Наследование признаков, сцепленных с полом.

Генотип как целостная система. Взаимодействие аллельных (доминирование, неполное доминирование, кодоминирование и сверхдоминирование) и неаллельных (комплементарность, эпистаз и полимерия) генов в определении признаков.

Методы изучения наследственности человека: генеалогический, близнецовый, цитогенетический и др. Характер наследования признаков у человека. Генные и хромосомные аномалии человека и вызываемые ими заболевания. Генетическое консультирование. Генетическое родство человеческих рас, их биологическая равноценность.

Лабораторные и практические работы

Решение генетических задач.

Основные формы изменчивости. Генотипическая изменчивость. Мутации. Генные, хромосомные и геномные мутации. Свойства мутаций; соматические и генеративные мутации. Нейтральные мутации. Полулетальные и летальные мутации. Причины и частота мутаций; мутагенные факторы. Эволюционная роль мутаций; значение мутаций для практики сельского хозяйства и биотехнологии. Комбинативная изменчивость. Уровни возникновения различных комбинаций генов и их роль в создании генетического разнообразия в пределах вида (кроссинговер, независимое расхождение гомологичных хромосом в первом и дочерних хромосом во втором делении мейоза, оплодотворение). Эволюционное значение комбинативной изменчивости. Закон гомологических рядов в наследственной изменчивости Н. И. Вавилова.

Фенотипическая, или модификационная, изменчивость. Роль условий внешней среды в развитии и проявлении признаков и свойств. Свойства модификаций: определенность условиями среды, направленность, групповой характер, ненаследуемость. Статистические закономерности модификационной изменчивости; вариационный ряд и вариационная кривая. Норма реакции; зависимость от генотипа. Управление доминированием.

Демонстрация. Примеры модификационной изменчивости.

Лабораторные и практические работы

Описание фенотипа комнатных или сельскохозяйственных растений.

Построение вариационной кривой (размеры листьев растений, антропометрические данные учащихся).

Тема 3.6 Основы селекции. Биотехнология. (2 часа)

Центры происхождения и многообразия культурных растений. Сорт, порода, штамм. Методы селекции растений и животных: отбор и гибридизация; формы отбора (индивидуальный и массовый). Отдаленная гибридизация; явление гетерозиса. Искусственный мутагенез. Селекция микроорганизмов. Биотехнология и генетическая инженерия. Трансгенные растения; генная и клеточная инженерия в животноводстве.

Достижения и основные направления современной селекции. Значение селекции для развития сельскохозяйственного производства, медицинской, микробиологической и других отраслей промышленности.

Демонстрация. Сравнительный анализ пород домашних животных, сортов культурных растений и их диких предков. Коллекции и препараты сортов культурных растений, отличающихся наибольшей плодовитостью.

Основные понятия. Ген. Генотип. Признак, свойство, фенотип. Закономерности наследования признаков, выявленные Г. Менделем.

Хромосомная теория наследственности. Сцепленное наследование; закон Т. Моргана. Генетическое определение пола у животных и растений. Изменчивость. Наследственная

и ненаследственная изменчивость. Мутационная и комбинативная изменчивость. Модификации; норма реакции. Селекция; гибридизация и отбор. Гетерозис и полиплоидия, их значение. Сорт, порода, штамм.

Умения. Объяснять механизмы передачи признаков и свойств из поколения в поколение, а также возникновение у потомков отличий от родительских форм. Составлять простейшие родословные и решать генетические задачи. Понимать необходимость развития

теоретической генетики и практической селекции для повышения эффективности сельскохозяйственного производства и снижения себестоимости продовольствия.

Межпредметные связи. Неорганическая химия. Защита природы от воздействия отходов химических производств.

Органических молекул: белки, нуклеиновые кислоты (ДНК, РНК). Физика. Дискретность электрического заряда. Основы молекулярно-кинетической теории. Статистический характер законов молекулярно-кинетической теории. Рентгеновское излучение. Понятие о дозе излучения и биологической защите

Резерв 1 час

Раздел 1. Вид (19 часов)

Тема 1.1. История эволюционных идей (4 часа)

Развитие биологии в додарвиновский Период. Господство в науке представлений об «изначальной целесообразности» и неизменности живой природы. Работы К. Линнея по систематике растений и животных; принципы линнеевской систематики. Труды Ж. Кювье и Ж. де Сент-Илера. Эволюционная теория Ж. Б. Ламарка. Первые русские эволюционисты.

■ Демонстрация. Биографии ученых, внесших вклад в развитие эволюционных идей. Жизнь и деятельность Жана Батиста Франсуа де Ламарка.

Тема 1.2. Современное эволюционное учение (8 часов)

Предпосылки возникновения учения Ч. Дарвина: достижения в области естественных наук, экспедиционный материал Ч. Дарвина. Учение Ч. Дарвина об искусственном отборе. Учение Ч. Дарвина о естественном отборе. Вид — элементарная эволюционная единица. Всеобщая индивидуальная изменчивость и избыточная численность потомства. Борьба за существование и естественный отбор.

- Демонстрация. Биография Ч. Дарвина. Маршрут и конкретные находки Ч. Дарвина во время путешествия на корабле «Бигль».
- Лабораторные и практические работы.

Изучение изменчивости.

Вид и его критерии. Результаты искусственного отбора на сортах культурных растений.

Генетика и эволюционная теория. Эволюционная роль мутаций. Популяция — элементарная эволюционная единица. Генофонд популяций. Идеальные и реальные популяции (закон Харди — Вайнберга). Генетические процессы в популяциях. Резерв наследственной изменчивости популяций. Формы естественного отбора.

Приспособленность организмов к среде обитания как результат действия естественного отбора. Микроэволюция. Современные представления о видообразовании (С. С. Четвериков, И. И. Шмальгаузен). Пути и скорость видообразования; географическое и экологическое видообразование. Эволюционная роль модификаций; физиологические адаптации. Темпы эволюции.

- Демонстрация. Схемы, иллюстрирующие процесс географического видообразования. Показ живых растений и животных; гербариев и коллекций, демонстрирующих индивидуальную изменчивость и разнообразие сортов культурных растений и пород домашних животных, а также результаты приспособленности организмов к среде обитания и результаты видообразования.
- Лабораторная работа
 Изучение приспособленности организмов к среде обитания.

Главные направления эволюционного процесса. Биологический прогресс и биологический регресс (А. Н. Северцов). Пути достижения биологического прогресса. Арогенез; сущность ароморфных изменений и их роль в эволюции. Возникновение крупных систематических групп живых организмов — макроэволюция. Аллогенез и прогрессивное приспособление к определенным условиям существования. Катагенез как форма достижения биологического процветания групп организмов. Основные закономерности эволюции: дивергенция, конвергенция, параллелизм; правила эволюции групп организмов. Результаты эволюции: многообразие видов, органическая целесообразность, постепенное усложнение организации.

- Демонстрация. Примеры гомологичных и аналогичных органов, их строение и происхождение в процессе онтогенеза. Соотношение путей прогрессивной биологической эволюции. Характеристика представителей животных и растений, внесенных в Красную книгу и находящихся под охраной государства.
- Основные понятия. Эволюция. Вид, популяция; их критерии. Борьба за существование. Естественный отбор как результат борьбы за существование в конкретных условиях среды обитания. «Волны жизни»; их причины; пути и скорость видообразования. Макроэволюция. Биологический прогресс и биологический регресс. Пути достижения биологического прогресса; ароморфоз, идиоадаптация, общая дегенерация. Значение работ А. Н. Северцова.
- Умения. На основе знания движущих сил эволюции, их биологической сущности объяснять причины возникновения многообразия видов живых организмов и их приспособленность к условиям окружающей среды.

Межпредметные связи. История. Культура Западной Европы конца XV — первой половиныXVII в. Культура первого периода новой истории. Великие географические открытия.

Экономическая география зарубежных стран. Население мира. География населения мира.

Тема 1.3. Происхождение и развитие жизни на Земле (З часов)

Развитие жизни на Земле в архейскую и протерозойскую эры. Первые следы жизни на Земле. Появление всех современных типов беспозвоночных животных. Общая характеристика и систематика вымерших и современных беспозвоночных; основные направления эволюции беспозвоночных животных. Первые хордовые. Направления эволюции низших хордовых; общая характеристика бесчерепных и оболочников. Развитие водных растений.

Развитие жизни на Земле в палеозойскую эру. Эволюция растений; появление первых сосудистых растений; папоротники, семенные папоротники, голосеменные растения. Возникновение позвоночных: рыб, земноводных, пресмыкающихся. Главные направления эволюции позвоночных; характеристика анамний и амниот.

Развитие жизни на Земле в мезозойскую эру. Появление и распространение покрытосеменных растений. Эволюция наземных позвоночных. Возникновение птиц и млекопитающих. Сравнительная характеристика вымерших и современных наземных позвоночных. Вымирание древних голосеменных растений и пресмыкающихся.

Развитие жизни на Земле в кайнозойскую эру. Бурное развитие цветковых растений, многообразие насекомых (параллельная эволюция). Развитие плацентарных млекопитающих, появление хищных. Возникновение приматов. Появление первых представителей семейства Люди. Четвертичный период: эволюция млекопитающих. Развитие приматов: направления эволюции человека. Общие предки человека и человекообразных обезьян.

■ Демонстрация. Репродукции картин 3. Буриана, отражающих фауну и флору различных периодов. Схемы развития царств живой природы. Окаменелости, отпечатки растений в древних породах.

Тема 1.4. Происхождение человека (4 часов)

Место человека в живой природе. Систематическое положение вида Homo sapiens в системе животного мира. Признаки и свойства человека, позволяющие отнести его к различным систематическим группам царства животных. Прямохождение; анатомические предпосылки к трудовой деятельности и дальнейшей социальной эволюции. Стадии эволюции человека: древнейший человек, древний человек, первые современные люди.

Свойства человека как биологического вида. Популяционная структура вида Homo sapiens; человеческие расы; расообразование; единство происхождения рас.

Свойства человека как биосоциального существа. Движущие силы антропогенеза. Ф. Энгельс о роли труда в процессе превращения обезьяны в человека. Развитие членораздельной речи, сознания и общественных отношений в становлении человека. Взаимоотношение социального и биологического в эволюции человека. Антинаучная сущность «социального дарвинизма» и расизма. Ведущая роль законов общественной жизни в социальном прогрессе человечества. Биологические свойства человеческого общества.

- Демонстрация. Модели скелетов человека и позвоночных животных.
- Основные понятия. Развитие животных и растений в различные периоды существования Земли. Постепенное усложнение организации и приспособление к условиям среды живых организмов в процессе эволюции. Происхождение человека. Движущие силы антропогенеза. Роль труда в процессе превращения обезьяны в человека. Человеческие расы, их единство. Критика расизма и «социального дарвинизма».
- Умения. Использовать текст учебника и учебных пособий для составления таблиц, отражающих этапы развития жизни на Земле, становления человека. Использовать текст учебника для работы с натуральными объектами. Давать аргументированную критику расизма и «социального дарвинизма».
- Межпредметные связи. Физическая география. История континентов.

Экономическая география. Население мира. География населения мира.

Раздел 2. Экосистема (11 часов)

Тема 2.1. Экологические факторы (3 часа)

Организм и среда. Предмет и задачи экологии. Экологические факторы среды (абиотические, биотические, антропогенные), их значение в жизни организмов. Закономерности влияния экологических факторов на организмы. Абиотические факторы среды. Приспособления организмов к действию экологических факторов. Взаимоотношения популяций разных видов в экосистеме: паразитизм, хищничество, конкуренция, симбиоз

Тема 2.1. Экологические факторы (3 часа

Видовая и пространственная структура экосистем. Пищевые связи, круговорот веществ и поток энергии в экосистемах. Устойчивость и динамика экосистем. Влияние человека на экосистемы. Разнообразие экосистем: природные экосистемы, искусствен ные экосистемы (агроэкосистемы, урбоэкосистемы)

Тема 2.3. Биосфера (2 часа)

Биосфера — живая оболочка планеты. Структура биосферы: литосфера, гидросфера, атмосфера. Компоненты биосферы: живое вещество, видовой состав, разнообразие и вклад в биомассу; биокосное и косное вещество; биогенное вещество биосферы (В. И. Вернадский). Круговорот веществ в природе. Демонстрация. Схемы, отражающие структуру биосферы и характеризующие ее отдельные составные части. Таблицы видового состава и разнообразия живых организмов биосферы. Схемы круговорота веществ в природе.

Тема 2.4. Биосфера и человек (2 часа)

Антропогенные факторы воздействия на биоценозы (роль человека в природе). Проблемы рационального природопользования, охраны природы: защита от загрязнений, сохранение эталонов и памятников природы, обеспечение природными ресурсами населения планеты. Меры по образованию экологических комплексов, экологическое образование.

■ Демонстрация. Влияние хозяйственной деятельности человека на природу. Карты заповедных территорий нашей страны и ближнего зарубежья.

Тематическое планирование

Учебник: В.И. Сивоглазов, И.Б. Агафонова, Е.Т. Захарова «Общая биология», 10класс, М.: «Дрофа», 2019 год

Темы	Количество часов
Раздел 1. Биология как наука. Методы научного познания.	3
Тема 1.1. Краткая история развития биологии. Методы научного познания (1 час)	
Тема 1.2. Сущность и свойства живого, уровни организации и методы познания живой природы (2	
vac)	
Раздел 2. Клетка.	12
Тема 2.1. История изучения клетки. Клеточная теория. (1 час)	
Тема2. Химическая организация живого вещества (5 часов)	
Тема 2.3. Строение прокариотической и эукариотической клеток (4 часа)	
Тема 2.4. Реализация наследственной информации в клетке (1 час)	
Тема 2.5. Вирусы (1 час)	
Раздел 3. Организм	19
Раздел 3.1. Организм – единое целое. Многообразие живых организмов. (1 час)	
Тема 3.2. Обмен веществ и превращение энергии. (2 часа)	
Тема 3.3. Размножение. (4 часа)	
Тема 3.4. Индивидуальное развитие организма (онтогенез). (2 часа)	
Тема 3.5. Наследственность и изменчивость. (8 часов)	

Тема 3.6 Основы селекции. Биотехнология. (2 часа)	
Резервное время	1
Итого	35 часа

Учебник: В.И. Сивоглазов, И.Б. Агафонова, Е.Т. Захарова «Общая биология», 11класс, М.: «Дрофа», 2019 год

Темы	Количество часов
Введение	1
Раздел 1. Вид	19
Тема 1.1. История эволюционных идей (4 час)	
Тема 1.2. Современное эволюционное учение (8 час)	
Тема 1.3. Происхождение и развитие жизни на Земле (3 час)	
Тема 1.4. Происхождение человека (4 час)	
Раздел 2. Экосистема	11
Тема 2.1. Экологические факторы (3 час)	
Тема2.2. Структура экосистем (4 часа)	
Тема 2.3. Биосфера (2 часа)	
Тема 2.4. Биосфера и человек (1 час)	
Заключение	1
Резервное время	1-2
Итого	33-34 часа